Welcome to MTB race training info, free! Searching about training right? Been there, done that. Plenty of links & info here.
I've become my own coach. Upgrading each year. Sport, Comp, Expert, Semi, then Pro class. Old & g
et'n faster! 

Training, Fuel & Recovery links on right. Sharing good finds. My 2011 Spring thought process below. Most of my other ramblings in 2008 semi-pro year. Read do, figure yourself out coach!!


Spring Training#6 Works For Me Coach

This will be my last Spring Training Post....see below fotr posts #1-#5. I just placed 4th overall at a 100mi MTB race.... on my SS. I'm on track this year no doubt. I'm in the force and train like the races mode. July I will peak. My spring thought process below. blah bla bla.

I see tons of views. Guess you like? Forget what I say, look on the right and read those articles. And figure out what works for you coach. Not too much more to say really...

So it works for me. Cycles, Phases and Pulses to get the base. Then work toward training like upcoming races (force, muscle & race mimics). Rest, miss work outs but ride with purpose when you do get out. Have fun. It's about quality fatigue cycles too. Recovery. Repeat. Be honest to your machine.

I'm too busy with non-biking life to be a 20hr a week work-horse. So it's all timing.

On topic of Supercompensation I know what brings on my "performance." The cost of rest/active recovery worth it (fun) vs. over digging too deep a hole.

Keep in mind I've been doing this for a while, your different and require different tatics. On those lines, here's an intersting topic to follow....

Have Fun!

Spring Training#5: Fatigue again

Ok, so this site has many links on the right side of page and various posts of info below. Keeping with my promise I'll continue to share this year's spring training thoughts, plan.

What happened with blogger, where did this post go? I'll try it again.

Basically I highlighted my real race season is starting this week with many races each month, and then cross season. Although I've missed multiple days in a row on the bike, I did enough trampoline, backyard tile work and gym work to keep it honest. I think mixing it up is great for the core and muscle development. Status: I've gained base fitness, at a fatigue status, next developing VO2max racing.

   Recent history after missing multiple days biking.:
      Tuesday Gym moderate stress
      Wednesday 1/2 hour trainer
      Thursday 2 hour hard SS gravel
      Friday 1/2 hour trainer
      Saturday 2 hr fast, good hills pace work MTB dirt
      Sunday no ride but 1/2hour+ trampoline, heavy yard work
      Monday 1/2 hour trainer
      Tuesday AM 1hour commute, PM 1hr pace work in hot temps
      Wednesday 1/2 hour light trainer

I listed out the last phase which consisted of hard efforts on the bike every one or two days, a few two hour pace efforts and various other activities as mentioned in paragraph above. Although didn't find time to bike as much as wanted, I feel FATIGUE. It was a few days active recovery before first race, expected some pain!

First race was last night. 52 minutes of MTB sprinting at local ski hill. I placed 7th of 50, about par with last year. I improve beyond base to better results over the next few weeks. Since I haven't been honing the VO2max fitness no surprise I was yo yo'ing off 4th place the first half of the race. It was awesome lung busting fun.

I'm planning to race into top end shape.Time is on my side, it's a long summer and cx season way off. I'm where I want to be. I'll design one more build 3 week cycle after I see how next race goes. My legs are a bit taxed now, I need to let them reset, revive mentally for another hard build sequence (tricky as racing in itself is a build period early each year)..........

Oh one last thing, I also noted to look at Auto Regulatory and Overcompensation links on the right. I'm thinking more about that topic latley. Now if blogger will stay stable and not delete this post...we'll be good. Stay healthy!!!


Spring Training #4 Lost with Confidence

Ok, so this site has lot's of links on the right side of page, and various posts of info below. Keeping with my promise I will continue to share this year's spring training thoughts, plan.

I admit, I miss my training log but tracking every ride has gotten old even for me, an analyst geek. This year I'm totally losing real time history. Going on feel. For the first time since 2005 I'm not tracking my volume (hours x percieved exertion x abitrary factor). I'm not logging hours. Instead trying to justify no tracking with going by phase, pulse, & cycles(PPC) feel/need. Grand experiment for the accomplished self coach!!

I'm convinced what you miss, you make up in quality later....to a point. I noticed over the years with family, school, work, ect ect....I miss a lot of days. I'm convinced after a miss PPC quality is better if your focused, recovered and push to goals. WANT IT SMART. I rest on confidence since I ride every ride with purpose - it works out. This is the ultimate tomfoolery confidence year. Will it work?

I park at the farthest spot at work, walk, feeling what my legs are saying. There's a confidence and questionable thought process that justifies hurting muscles vs. muscles ready ache. Likewise a mental break need vs. get off my lazy ass. Injury risk vs. development. Eating right vs. insianity and protien needs. I compare what I think I feel (vs. my last years log) to what type of training I need forawrd. Once I have a base built I abuse and recover with future races, injury risk, and mental happiness in mind.  .

I've missed many days lately but had good PPC's. I have a good base. The goal is to hammer in some force and vo2max before the race season starts (like in two weeks!!). I have this weekend warrior effort left.....then weekly sprint races start and yeah that 100mi mtb race. Perfect endurance, VOmax and self force training abuse the May goal. Any noted miss or screw ups I'll recover by CX season. Meanwhile all good until first race results!

Confidence, looking back on prior year logs, and summer finally here in MN....I can abuse myself big time this month, and still hit a strong July peak. I promise myself to rest when that certian ache feeling starts or obviously beat down.  :)


Spring Training#3 Sore!

Ok, so this site has lot's of links on the right side of page, and various posts of info below. Keeping with my promise I will continue to share this year's spring training thoughts, plan.

Last post shared plan was to basically abuse myself with a big multiday phase. I found over the years once I work through "kinks" prepared for hard exercise, I can hit it.

"Kinks:" yeah every year during base volume period I seem to have ass, elbow, knee, back, shoulder, nuts, mental pains you name it pains...gingerly I recover and ease through it. The more i age the more doubt and suspect...but this last phase proved I coached myself into another good season start.

Thurs-  2 hr z2/3 respectable SS 44x16 cx tires flat gravel path effort
Friday-  1/2 hour misc trainer & gym. Gym, couldn't run because back tight from moving bro, but moderate leg work. Played it safe as I knew big Sunday coming.
Saturday-  first day on dirt!! SS 34x18 on hilly course 1.5 hrs. Many Z2 to VOMax efforts. Awesome fun.
Sunday-  Hard one way into wind solo SS effort on complete gravel flats 4.5 hours, felt strong but got beat down!
Monday-  trainer 30 min at lunch to flush, light effort. Hate trainer.
Tuesday-  Gym, running varied 20min and hard leg work. Now I hurt!
Wednesday-  recover, nothing

Thursday- I hope to glide trough a 2 hour SS roadie type effort
Friday- transition day, ride to how I feel. Evening fun ride planned.
Saturday- hope to find time to hit the hills, or hard 3 hrs, at leadst 2.
Sunday- bonus day if i can get out. Set the alarm, race on. motivate.
Monday- make it hurt to make up for whatever this phase didn't offer.

Concerned- Vo2 Max train? make mid-May race season hurt less.
Recover, more training for 100mi MTB race in Mid-may
Kinks out, basically base trained+, ready for xc race abuse



Spring Training #2

Ok, so this site has lot's of links on the right side of page, and various posts of info below. Keeping with my promise I will continue to share this year's spring training thoughts, plan.

Last post I explained my thoughts on phases, pulses and cycles. We'll I've had interesting things happen since. I was in the hospital on a Tuesday before a 111mi Saturday gravel race. Stomach pain galore, like a kidney stone. I don't frequent the hospital and let's hope that never happens again. Anyway, it messed up my week and that training race. I had enough power to get 5th in KOM points at beginning of race but had issues remainder of race. It's that time of year when odd body pain, adaption and funk happens in older fools! :) Anyway that hospital thing was weird. This spring has been a snowy hard one to bag base miles.

Generally I still need base miles (for all these reasons), but also have a 100mile "MTB" race coming in May. The point is I'm always thinking about what type of training I need and recovery. It's a tough time of year, base miles needed but eager to start training on the MTB frame.....and dirt. Push but recover and not get hurt...

MINDSET backwards: I was in the hospital for a day. Related mindset and life kept me off the bike for a week! I had a bad 111mi gravel race. The xc season is screaming nearer. Its's all fun, no panic as I've had big breaks in spring before (all tracked on my old logs).

MINDSET forward: It appears I ussually get 30 hours on bike in April. I can do it(mental boost!!)   I still need base, need MTB body position for 100mi MTB race sustianability, need to build on base with force soon, eventually need intensity efforts.

PLAN (phase needed): Back on bike between busy family schedule. Getting two hour shots in on the MTN frame, 44x16 SS CX tires at steady gravel/road pathways work pace, some hills and push efforts. Want 30 bike hours this month. Have a 5 hour ride w/heavey pack on planned. Big Phase (multi-day) workouts weekend will end with base ride. 1 moderate gym session (not a build, not to get sore) during 4 day phase for extra volume. This phase will push my body a bit but I won't hurt myself!!

NEXT: Once a week races start two weeks into May the 100mi MTB race is mid May too.... So after April phase recovery....with spring weather to motivate, will fit in some hill/intesity effort. I want to feel some vo2 max pain and force then recover before May races. Intensity build, and real xc race abilities will come by just racing and "after" the May beat down recovery.... July I always reap benifits and peak....later on that plan. Also in the back of my mind is CX season peak.



Thinking - Cycle, Phase and/or Pulses?

So this year I'll try to actually post up my training thoughts through the year. I can't promise I'll respond to comments quickly, but I enjoy so will when I can.

Caution: if your not a seasoned trainee use periodization (see below text or blog posts).

Bullets related to below paragraphs:
-My Winter is all about fun, staying in shape and trying to not get too fat
-This Winter raced/rode the Pug for fun, did gym work with short treadmill running
-Thinking about long rides and events coming up with CYCLES, PHASES and PULSES
-PHASES & PULSES are like the long ride events coming up, all part of CYCLES
-Periodization taking back burner as I'm in shape- big CYCLE blocks worked well last year
-Goal block-n-tackle 5 wks long ride vol. eventually riding like mid-May 100mi MTB race
-Sneak rest week in before mid-May 100mi MTB race (have a better race!)
-Injury Concern: shorter xc racing season needed intensity PULSE/PHASES begin mid-May!
-July and ~Oct/Nov peaks

Below (Early March post) I rambled about CYCLES. It's been a long snowy winter. I rode the Pug 1-3 times a week 1.5-3 hours commuting and/or woods mtb trails (Pug: it's 4 inch ballon tire beach/snow bike). I also did three Pug races Jan & Feb (fun). The bike is heavey, goes over anything and really works the core and upper body while having fun balancing through varied snow conditions. Through Winter I also hit the gym ussually once a week, teadmill and leg exercise maintainance. Winter is all play, fun without focused training thoughts. So by March my goal and thoughts are around longer rides and future plans.

Long rides are totally do-able for me. 2-3 hours good. 4-6+ awesome but harder to find time. 5 years ago a two hour ride hurt like heck early season, now no big deal.

I have a 111 mile hilly gravel race early April (cx bike). I also have a 100 mile mtb race mid-May. The long training rides will get my circulation pathways re-mapped. Also said rides will teach my body how to burn fat, lactate and prepare for harder training. I'm doing another du-athelon late this year and would like to have a better run portion too. The April 111 mi race is about fun yet in itself endurance and force training. A PULSE.

Last year by mid May had had great CYCLES. What I mean is big hours in saddle multiple weeks then a volume rest week or period. This year I'm getting in a few long rides and some good PHASE efforts. PHASE is a multi-day effort where you feel taxed afterward. Last year I think the PHASE kicked my body into toughness, helped me push harder. I worry about injury often and rest thoughout. Prior years perhaps too safe with early season periodization methods. After years of racing I can handle more. Last year I had a good 5 week CYCLE of riding 9+ hours each week ending with mid-May race inclusive. The 5 week period had some good PHASE efforts and two 100 mile PULSE efforts.

Anyway, the point is I'm thinking about CYCLES and when to rest within. Thinking about PHASES of multi-day abuse (gym inclusive, running introduced) and PULSES (which will later go from real long rides to intensity/race pace PULSES). My efforts are related to the long events. I guess the periodization method of i.e. 4, 6, 8 rest, then 6, 8, 10 rest repeat is taking a back burner until race season peak needed. I'll peak compensate mid-season then cx season.

I'll have a few 1 hour races coming up mid-May. They will hurt - injury risk races as not ready and may not be recovered. But the races will introduce intensity pain. The race pace is a bit different than force training (hills and SS) efforts done in later weeks of long ride base.....  that's it for now...


Get in a Cycle (spring training#1)

Pun intended. It's spring 2011 and you not getting in shape yet....take a few weeks of melllow exercise and prepare to RIDE!!!!!!!

ONE: Over the years I moved from heart rate monitor and tracking miles, to tracking percieved intensity...intern volume, and now after figuring much about myself.....I just ride in cycles.

TWO: IT'S ALL ABOUT BUILDING A MACHINE. Ride long now, suffer a bit to get into ready. Pump your heart up slow. Then long. Toxins out. You body will adapt. Eat right protein, fruit, veggie. When ready...force/muscle it. And then add intensity/pace.     TWO+: If your good to yourself you will know the cycle ups and rest weeks (or days). It's your cycle. Get on then rest up. repeat. It's not about miles it about periods of volume. Read my posts.

My feeling is you must do paragraph ONE then attempt TWO for a year before you go free ball into paragraph TWO.

You'll see. Read on...


Latest Additions to Training Blog

Below are a few places to start. Post up if questions or want to see something in particular. I get an e-mail when comments pop-up.

JAN 10: MOUNTIAN ATHLETE TRN'ing, core beatdowns, link on right
JAN 10: AT ALTITUDE, updated with new link
Jan 10: MORE ABOUT ME post below
Jan 10: THRESHOLD idea active.com, link on right
Jun 09: AUTOREGULATION/COMPENSATION 2 articles on-right
Mar 09: WHO's FAT AGAIN comments update.
Mar 08 BASE TRAINING: link on right, Joel Friel Nov 07'
Oct 08: INSANITY in repeat: yoy pic update
Mar 08: PALEO DIET for ATHLETES: blog post below
Mar 08: TRACKING PE: blog post w/formula below
Oct 08: COACH PAGES link: link on right
Oct 08: WEIGHTS, body weight only link


More About Me

Basically I'm your typical high energy, always have been hyper-outdoor-active guy. Climbing, snowboarding, many hikes and many individual challenges over many years gave me ability. Multi-pitch climbing when younger, on-site flash 5.11's, long triad 10's. Snowboard nationals in 91' etc.. With historical higher intensity base, focus & some a-typical gifts, MTB'ing fits now. Year 2010, 44. Married, kids, going to school to finish my MBA, FT employed, you know the drill. Looking back on 4 years of bike training logs I now generally put in 15-40 hours of training a month. That's it. Maybe this is the year to do more! Sound familiar?

My training is focused. I gain up to 10lbs in the Winter, but still ride a few times a week. Last 2 years started doing gym work. I eat better to start a new year and into Summer. I learned a great deal about base miles from Joel Friel and agree with much of his information(godd place to start). Yet, I've never followed his specific work outs.

I never do pyramids, cross-cross or one leg stuff. Many road base miles early season to adapt, many SS rides for force and much variety of high intensity works for me. Recovery, fuel, periodization and "focused" rides bodes well. Anyway, for what it's worth you have info from paleo diet to workout ideas, take what works. I be no expert, just a pro (ha). Do put in the multi-hour base miles early season for sure. Give it two seasons of effort to realize adaption momentum........


Insanity in Repeat

Insainity: doing the same thing over and over again and expecting a different result. Yeah, the gifted can get away with this, but we gotta coach and learn......

What will the future bring according to your history?? What's reasonable and worth your time? All things being equal maintianing smart heathly decisions...it's going to be a fab year folks. Your plan? Are you sane? If you can't plan your future, see periodization and measuring P.E. entries below.



I've really started to gain an understanding of how important fuel, as in, DIET is. Previously I leaned torward "self timed" low carb, fresh real/foods and proien for diet, you know the drill. Anyawy, reccommend the book. It does great periodizations of what and when. The book also has fab data on protien, acididy of foods, glycemic index, carb foods, and many many other tables and index data. Pretty comprehensive. Yet another baseline to start learning your best solution for performance! "The Paleo Diet for Athletes" Cordain & Friel, 2005

Periodization Graphing and Planning

I absolutley buy into measuring percieved exertion, volume and increasing loads over time. Periods of increase then recovery then more increases then recovery, repeat. I have great graphs (visual) aids from data gathering that really helps me. While I don't map out a weekly plan per-se', I loosley target a result as shown below. It's enough to keep me on-track. See what data I track? Can you tell when intensity overcame volume? Tracking your ride data is critical to learning and riding with a focus!!!!



Fuel & Hydration is one of the deal makers or breakers. I include sodium, potasium, electrolytes, carbs & all that in this category. Recovery, protien, omega's etc.. 2006 was my big learning year. Completed Leadville 100 with no cramps! Want a copy of excel tool?

TRACKING: Perceived Exertion (P.E.)

Perceived Exertion (P.E.) should be used as an independant variable then combined with TIME determine your dependant output, VOLUME.

PE means little by itself, "that was hard"..."that was easy"...comments like that mean nothing unless related to TIME. It's TIME and P.E. begin to explain what your body just did. Try this in addition to your ave heart rate to measure events.


or add in a constant to make numbers bigger. I.E
PE x TIME x 100 = VOLUME

Or multiply PE and TIME by your average heart rate instead of a constant if you wish. I wouldn't reccomend the HR factor unless your way dedicated to wearing the HR Monitor all year, all the time. Otherwise your tracking log will have data tracking inconsistancies. Keep in mind you can always track heart rate monitor indicators in separate column of your spreadsheet.

It's the VOLUME your asking of your body that matters most. You can't accuratly measure what your body is going through simply by PE alone. Measure VOLUME by event, for the week, weekly average and over many weeks. Then when you are tired or fresh, you'll start to learn how you got there. Also, there are times short high intensity is needed and times when low intensity long periods make sense per training needs. Tracking can also help alert when you need recovery or getting stronger. Heart Rate tracking on it's own can help too.

Bike training is personal to each of our our potential attributes, strenths, goals, time ect. I will admit in prior years, early in the year my PE was lower and TIME was higher. I no longer have this total approach in early season. It's mixed now to my needs and what benifits "me" personally. It vauegly resembles in linearity to my first few years training. But that's just me and my development. I garuantee you will change and require varied training than mine. So I try not to preach how to, other than, track it. We're all different, go figure. Capture and note your VOLUME as outlined above, it's the best way to baseline what your are asking of your body and to learn, over time...

Failure May Come if.....

What will make you fail in a race, ride or event?

-dehydration or overhydration
-non-water fuel isn't sufficient or you cannot digest at rate demanded
-pace is beyond your Lactate Threshold (LT) for too long, you lock up
(Lactate can come from any muscles undertrained or stressed causing failure everywhere!)
-technical ability is lacking or fail from crash
-come into race overtrained or muscles not capable of event demands

Prevent with knowledge, experience and/or training. What else?



Article by Jeremy Likness

Have you ever had a cut that 'healed' into a scar? Have you ever found that your hands or feet form calluses from friction - either after running or handling tools or moving heavy furniture? Both of these are examples of the overcompensation principle.
When applied to your health and training, overcompensation can be a powerful tool to maximize your results.

The overcompensation principle is a survival trait built into your DNA. It is the body's way of adapting to stress. The scar is the byproduct of the body's frantic attempts to heal your wound as quickly and effectively as possible. The calluses on your hands are toughened skin, overcompensated to handle the continued onslaught of friction. There are other ways that the body overcompensates that are not so obvious, but understanding these processes is important for success.

While this segment is focused primarily on training, a quick side note about nutrition is in order. Overcompensation even happens with your metabolism based on the foods that you consume! The body is constantly trying to remain in a state of balance. This is called homeostasis. When you consume fewer calories than your body requires, the body responds by slowing your metabolism. This is in an effort to expend less energy and adapt to the lower caloric intake. It is this reason why low calorie diets are doomed to failure ... because they ultimately result in your metabolism slowing and can in fact make it harder to lose fat in the long run.

If you understand overcompensation, you can use it to your advantage. Instead of lowering your calories, you can employ a technique known as zigzagging them. If your goal, for example, is 1800 calories, instead of consuming exactly 1800 calories per day, you would consume 1600 one day and 2000 the next. Your average intake is the same, but by varying your daily intake, you prevent your metabolism from overcompensating and slowing down too much as the result.

In training, you want overcompensation to take place. This is how you will grow and develop stronger, bigger, leaner, faster muscles. Let's look at a few of the ways that your body will overcompensate as they relate to training.


Muscles must be stretched to improve flexibility. If overcompensation did not occur, you would always have the same level of flexibility. Fortunately, when you stretch your muscle, your body overcompensates by increasing the flexibility of this muscle. This is why consistent stretching sessions will improve your overall flexibility, because overcompensation allows the muscles to become increasingly more flexible.

The body is simply adapting to the stress of the muscle being stretched and responding by improving the flexibility to so it can better handle the stretch. Performing stretches in a controlled fashion will create a healthy insurance policy against those unexpected incidents that may force your muscles to stretch, such as a fall or collision.


Whether you are lifting a heavy weight or throwing a fast punch, your muscles are forced to exert power. Strength is really a function of neuromuscular efficiency. In other words, to gain strength, you don't necessarily need to gain muscle size - instead, you must train your body to use your muscle more effectively and efficiently.

Forcing the muscle to handle a heavy load or to accelerate rapidly doesn't just stress your physical systems, but your central nervous system (CNS) as well. The body overcompensates for this by improving the way it coordinates your muscular contractions. It becomes more efficient to expend less energy and subject the tissue to less damage, and the end result is improved strength.

Muscle Mass

Hypertrophy, or muscle growth, occurs as another response to training. When you train for hypertrophy, you essentially damage your muscle fibers. This micro-trauma is what leads to soreness after an intense workout and is also the reason why you must rest between workouts so that the muscle has time to recover. If you recover adequately and supply the appropriate nutrition, the body will overcompensate by increasing the size of the muscle.


One of the most studied effects of overcompensation is related to endurance. I am currently training for a 50-mile (80km) race in 2007. My training right now is about 30 kilometers per week. Each week, however, I slowly increase the distance, and will eventually run well over 100km per week.

It will take me about a year to prepare for the race because I will give my body sufficient time to overcompensate. As I increase the volume of my runs my body will respond in several ways. It will increase the number mitochondria in my cells, little powerhouses that help use oxygen as energy.

It will increase the volume of myoglobin, a protein that helps transport oxygen, available to my muscle cells. As I increase my distance, I'll ultimately run long enough that my body will run out of its preferred source of stored fuel: glycogen (carbohydrate stored within muscle cells). It will have to turn to fat for fuel, and in the process I will become more efficient at both burning fat and utilizing fat as a fuel source, making my long runs more bearable as my body overcompensates to handle the stress.

As you can see, overcompensation is perhaps the most important principles of training. It is the reason why our bodies respond to training. All of the other principles we will discuss relate to overcompensation in one way or another.

In fact, the remaining laws really dictate how to manage your training to continue to take advantage of overcompensation without 'burning out.' It is about learning how to maximize overcompensation without going too far - because the body can only overcompensate so much before it becomes exhausted.

Core & Gym Work

CORE: Must have strong mid-section. Your middle is your crowbar. Leverage to pedals requires strong mid regardless if you got gears or not.

STRENGTH THROUGH WEIGHTS or BIKE: I use the weight room at work and do odd home reps, not buying a gym membership ever!!!

To ensure weight room transfer to bike, bike often and be careful of overtraining.

UPDATE: "weights article" web link on right has on-bike or off-bike tips. I find single speed seated climbs and standing a great way to tweak you butt, back, arms, shoulders and core. No SS, put a heavey pack on. Be careful not to tweak, get out of your comfort zone....when ready, baby steps!

Who's fat again?

2009: I'm 5lbs heavier than I like at race season start, in two months. But this year< i'm just going to keep on eating fruit, veggies and protien as much as I want! I'm not talking heavey foods, just eat when I want, and eat lot's. I know it will come off. Aerobic and an-aerobic, feed the fire!!

Family, holidays, then late 2006 hernia surgery makes a guy soft. Weak or balanced? Finished 2007 riding and having fun in the snow. 600=160, 500=150, 550=155, 490=149.

Dress for Success

Who cares how you look. Are you prepared with tools, warm gear & essentials? I often do long training rides with a back pack full of goodies and water. Nothing is better than heading out on a 4 hour ride knowing you have all the tools, fuels & layers you need. I may wear flashy colors when I race but looks are for movie stars. I'm just a joe on a bike.

Recovery, Overtraining and Sickness

Note to self.... As I write hope it sticks. If I write, I will follow it. Don't overdo it too much or I'll pay. Recovery is key! Remember the ultimate goal of staying healthy, not getting hurt...


Long Steady Speed-O???

So does long steady, less than max workouts really work. I'll say this......for 4 years I rode hard....on crazy steep dirt trails, the stiffest, craggiest MTB trails I could find. For 4 years thinking short hard benifited my XC race effort. HOWEVER, finally in 2005 I spent many hours on road doing steady work. OK, forget distance, it was 1-2 hrs on my mountian bike, on road. I threw away my speedo & went steady. The effort in 2005 took 40 minutes off my best 40 mile Chequamegon race time.

You need a base to last, once you have that you can do intesity work. It may take more than one month or year to get a base (endurance and circulation capability). Yep, screw craggy steeps, screw speedo's. I use Pereceived exertion & time on bike, period.....HR pre season to stay in zone. Only you will know how much time each ride needs to be, and when to do intesity work vs. longer base work. Go figure!

Heart Rate (numbers motivate)

After reading all the articles you may notice Heart Rate is needed. Since you can't afford a watt meter you'll need to estimate "your" zones. There are many ways to do this, here's one. CALULATOR However, HR is a lagging, fluxuating, measure. In fact everyone's heart is different, and acts different pehaps daily. Investigate you, learn.

Update: see "e-tips" link on right side of page for more


Intensity Training Menu

This is mainly taken from Joel Friel's Mtn Bike Training Bible. I altered for me. You need to go buy book and digest, and learn your zones. It's key to learn how to cater to your needs and always ride with focus. If a season goal is a race over 30 miles, you may have a tricky balance between longer and shorter intensity training rides. These are more for shorter XC races than enurance but helpful either way non-the-less!

First thing before doing these
build a solid base, ease up over months to longer rides. WARNING: you may want to see your Doctor before doing any of these. Seriously. Since these are sort of progressional, getting to the high levels straight away is not realistic. Some areas may be harder than others for you. This being my 3rd year race training I'll now, finally, hope to have a realistic chance at upper items. Tough stuff. CAUTION: Don't overtrain! Back off or recover often to get feel of your body & mental needs.


(Z1<138) (Z2-140/152) (Z3-152/160) (Z4-158/170) (Z5a-169/172) (Z5b-173/178) (Z5c-179+)

E1: RECOVERY: - (Z1) - 15-30min not on excel all periods

E2: ENDURANCE: - (Z2) - seated on uphills, high norm cad, all periods

F1: HILLY ENDURANCE: - (Z4/5a) - several minute climbs, 60 rpm, E&F all periods

F2: B GEAR CLIMBS: - (Z5a/5b) - Steep 1-2m climbs, 50-60rpm stop if knee issues, 6-30min total, F, Bs3-B1

S1: SPIN UPS- (Zn/a): - downhill or tailwind lighter resistance, gradual inc of rpm over 30 sec to max w/o bounce, all non-build

S2: ISOLATED LEG: - (Zna) - all non-build

S3: FIXED GEAR: - (Z2-Z3) - road bike, 90 rpm or higher, flat no wind, E,F,S, all non-build

S4: FORM SPRINTS: - (Zna) - 6-10 sprints of 10 seconds, normal sprint gear, focus on form, do alone, Bs2- Bs3

S5: OFF ROAD HANDLE: - (lowZ or low power) – work on skills in park then trail, Bs1-Bs2- Bs3

M1: TEMPO: - (Z3) - flat road, 20-60min, avoid traffic stop areas, stay aerodynamic body, Bs2- Bs3

M2: CRIUSE INTs: - (Z4-Z5a) - flat, 3-5 ints 6-12m ea. (start 4x6), TT rpm, 2-3m recover easy, listen2body, Bs3, B1, B2, P, R

M3: HILL CRIUSE INTs: - (Z4-Z5a) - “do 2-3 M2 first………TT rpm or lower” listen2body, Bs3, B1, B2, P, R

M4: CRISS-CROSS THRESHOLD: - (lowZ4 to highZ5a) – ride 20-40m alt btwn zones every 3-5m, TT/aero, B2, P

M5: THRESHOLD: - (Z4-Z5a) - 20-40m TT, listen2body, relax, aero, monitor rpe, do3x M2’s before attempt, B2, P

M6: SHIFTING CRIUSE INTs: - (z4z5a 60sec then z5b 30sec) cruise int. but shift btwn gears. TT rpm, max 30min tl., B2, P, R

A1: ANAEROBIC ENDURANCE INTs: - (Z5b) – flat no stops, 4-6 ints 5min ea., high rpm race like, ease spin recover, B1, B2, P, R

A2: PYRAMID INTERVALS: - (z5b) – A1 but 1,2,3,4,5,4,3,2,1 min. long, recover equal to previous/easy spin, flat road, B1, B2, P, R

A3: HILL INTERVALS: - (5b) – steep off-road hill 3-5min., 4to6 climbs, seated, higher than norm rpm, spin down easy, 9-18mT, “ “ “ “

A4: LACTATE TOL REPS: - (Zna) –starts, slight uphill or wind, high pow accel, 3-5sets 30/40 sec. rpm+, 6m max, later12m, 48hrs, 1/2wk max, B2, P

A5: LONG HILL REPS: - (60 sec. Z5b sit then 30 sec. Z5c stand), sit Z5b then shift to higher gear stand to Z5c, all high rpm, B2, P

A6: RACE SIMULATION: - (Zna…race relevant) race with friends, if fresh employ race tactics, B2, P, R

A7: TIME TRAIL: - (Zna...A race relevant) terrain and conditions like race, 10-20minute loop, do 40min, recover 5/10m, B2, P, R

P1: JUMPS: - (Zna) 3-5 sets of 5 jumps, 15-25 tl., explosive power frm 1st stroke, 10-12 rpm each leg, stand, high rpm, B1, B2, P, R

P2: HILL SPRINTS: - (Zna) on or off road hill, 8-12 sprints, 8-10 sec., flying start, power into, stand through, 5min recover, B1, B2, P, R

P3: CRIT SPRINTS: - (Zna) short loop off road, tight corners, 6-9 sprints, 25-35 sec., incl 1 or more corners, 5m spin recover, B2, P, R



Dear Diary,

Thursday and Friday were my first two painfully happy road rides of 2007.

Putting the HR monitor on was almost as tough as getting on the bike knowing a chilly stupid studded tire Minnesota road ride was ahead. It was then, with said first ride, the yearly argument of time and motivation would be settled.

Soon I was not cold, just breathing and turning those familiar circles. Oh how wishful pace gave high heart rates.

Pain on many levels taunted motivational reasoning. Words like steady, grimace and grit we're logged. The bike seat and other ergonomic problems pressured. Still in a simple sense it was enjoyable for all the mechanics and freedom biking brings.

Yet at some point on each ride there was more. So much more. As air, blood and road mixed to create recorded data, the thought of goals sparked something huge..........hammering in an adreneline intoxication...........my eyes opened again as they have before.

2007 WILL be a biking year like no other!!!!

The only two arguments that matter:
1. Every year with additional circles on my odometer of fun.............confidence, circulation and performance increase.
2. Knowledge and focused training created increases last year greater than previous yoy results.

Motivational flashbacks of success, learnings and accomplishment were soon erased with 2007 goal focus.

There is no reason 2007 will not produce results desired.

I Believe. I must ride. I will meet my goals.


Training Coach Pages

I've never used a coach and have no interest in paying the fee. Regardless, interesting list of coaches below. If bored look through their sites for information and knowledge.

areUfit - Robin Akers, cycling coach, providing details of the training, guiding and holiday services provided for cyclists and general fitness services for non-cyclists.
Arnie Baker Cycling - Arnie Baker MD, bicycling coach, racer and author. Website includes articles, books, handouts, and information about coaching services.
Bicycle Racing Videos - BicycleCam.Com offer videos that put you in the rider's seat during actual Pro Men 1-2 races. Filmed from start to finish without interruption, the videos are designed to be inspirational entertainment for the indoor trainer.
BicycleCoach.com - Searchable database of profiles of hundreds of cycling coaches, and the coaches reveal training and bike riding tips, with a new tip posted every few days.
Carmichael Training Systems - Cycling, triathlon, and endurance coaching by Chris Carmichael and associated coaches. Includes training package summaries, camp dates and locations, coach profiles and levels, performance center locations, press releases, articles, and resources.
Coach Carl - New Mexico based cycling coach Carl Cantrell offers paid coaching services and free training information. Topics include cycling psychology, strategy, bike technology, training, and management.
Coachingbible.com - Professional web-based coaching software for cycling, multisport, triathlon, adventure, and running coaches. System includes customized features, training templates, message board, and coach-athlete communication system.
CoachSeiji.com - Receive custom cycling, triathlon, multi-sport, and endurance coaching in person or via the Internet. Specializes in comprehensive training programs that balance competitive goals with everyday life. Site offers coaching information, training articles, and racing tips. Based in Austin, Texas.
Colorado Premier Training - Coaching cyclists offering expert training advice, also meet other cyclists online by organizing group training rides.
CRCA Presents a Day with Chris Carmichael - Notes from a clinic on training for bicycle racing by 1999 US Olympic Committee Coach of the Year Chris Carmichael. Hosted by the Century Road Club Association in New York.
Cycling Coach David Brinton - A former U.S. Olympian and cycling coach with 22 years coaching experience. Details on coaching philosophy, biography, testimonials, programs, and success stories.
Dave Lloyd Complete Coaching - Cycling coaching service from ex professional cyclist - Dave Lloyd. Site also offers coach bio, athlete news, and coaching services.
eliteFITcoach.com - Southeastern US professional coaching organization offers in-person and Internet-delivered training programs. Coaches elite, amateur, and fitness clients.
FasCat Coaching - Coaching for mountain bikers and road riders. Train under the supervision of an experience racer and USA cycling certified coach. Specializing in personal training programs.
Interactive Training Plans - Individual, daily updated training and nutrition plans which adapt instantly to the athletes feedback - for endurance athletes of all levels. Information provided in several languages.
Jeff Devlin Coaching - Coaching for cycling, mountain biking, triathlon, duathlon and running. Custom training programs via e-mail, fax and phone.
Joe Friel's Ultrafit - Cycling and multisport coaching services for endurance athletes offered by Joe Friel and associate coaches. Custom training programs for weekend warriors, competitors, and Olypmic hopefuls.
Kathy Watt's Personal Training - Olympic gold medallist Kathy Watt and her coach, design programs for individuals, groups and companies to improve their cycling performance or skills, including running, swimming, weight training, health and fitness.
Masters Athlete Physiology and Performance - Masters Athlete Physiology and Performance is a high content website dedicated to examining the physiology and training methods of endurance sport
MTB Coach's Tips Newsletter - A free e-mail newsletter with tips and articles from a certified mountain bike coach. Training, skills development, racing strategy and other mountain biking topics are covered.
Online Bike Coach - Individualized cycling training programs focusing on improvement through technical analysis and personal attention. Includes online and on-site training, pricing, and overview of programs and services, clients, and contacts.
Progressive Cycle Coaching the coach Dan Bennett will personally design a cycling training programme based upon your racing and training goals. Your programme will include a range of training, racing and lifestyle advice designed around your needs. There are a range of training programmes to suit all budgets and needs and with the free extras.....
The Peaks Coaching Group - Personal and online coaching service offers power-based training programs and nutritional consulting to athletes. Includes training and racing tips, cycling camps, and training products.
Richard Stern Training - Scientific training for the competitive or recreational cyclist. Emphasizes power training and physiological testing. Training articles and products.
Roger Marquis' Cycling Page - with lots of information about racing, training, bike fit, and a cyclist's rights to the road.
Scientific Coaching - Coaching from world masters champion, accredited sport scientist and senior coach Dr. Auriel Forrester. Home of the Spindoctor-turbo turbotraining program.
Spinergy - UK based Spinning instructors offer periodisation-based cycling programmes for recreational and competitive cyclists who want to get the most out of their time training indoors on stationary bikes.
SportVelo - Located in the San Francisco Bay Area, offers bicycle coaching and premier bicycle services including fitting/ride evaluations, pro-bike builds, wheel building and complete bicycle maintenance.
TORQ Personal Training - Services offered by Matt Hart's London-based fitness training and consultancy business geared toward cycling.
Training for Cycling Time Trials - Promotes a scientific training program for time trialists (available for a fee as en electronic book), but a good overview of training tips and techniques is available for free.
Walden School of Cycling - A hands-on, learn-by-doing approach in sunny Florida.
Wattage Training - Coaches Michael Sherman and Greg Steele are advocates of training with bike power meters and, from their base in Salt Lake City, Utah, offer customized training plans for cyclists ready to tap into that technology.
Wenzel Coaching - An organization of qualified coaches led by Rene and Kendra Wenzel. Offers training programs for all levels of riders and racers.
Whole Athlete - Programs for optimal athletic performance. Individualized and scientific-based coaching, performance anbalysis, yoga for the athlete, nutritional counseling, sport psychology, and bike fit.


Recovery: Whole Athlete Performance Center

Optimize Your Training off the Bike
By Dario Fredrick
[Velo News, Vol. 34/No. 7, April 25, 2005]
Effective training has many components: proper intensity, sufficient volume, intelligent
nutrition, and a balanced psychological approach. While each of these components plays
an important role, the most important part of effective training actually happens off the
bike: recovery. The process of physical training literally breaks us down, both physically
and mentally, and it is only during the recovery from training that we build resilience,
power and endurance. Without proper recovery, the damaging effects of training
accumulate and can lead to burnout, overtraining or injury.
Most competitive cyclists have little difficulty training hard, devoting plenty of energy to
their physical training. While it is essential to apply workloads that stress the body
beyond its current state in order to improve, benefits are realized only when recovery
from the training occurs, as the body rebuilds itself and adapts to a higher level of power
or endurance. Recovery is as important a part of training as the physical training itself.
The rate of recovery is important for competitive cyclists, particularly as they commonly
train and race on consecutive days. A proactive approach, following some basic
guidelines can speed the rate of recovery, improving performance potential for
subsequent workouts or on back to back race days. We can divide proactive recovery into
three main categories: refueling, rebuilding and restoring.
Refueling for Recovery
The primary fuel during exercise, especially at moderate to high intensities is
carbohydrate stored as glycogen. Muscle glycogen is a “fast” fuel located directly at the
site of work production, and its depletion leads to fatigue, reducing peak sustainable
power. Logically, replenishing muscle glycogen stores after a race training session
becomes a priority for optimal recovery. Furthermore, sufficient carbohydrate intake
before and during endurance exercise may help reduce stress on the immune system
inherent in prolonged and intense training.
The timing of replenishing glycogen can affect the rate of recovery. The most current
research has demonstrated a window of opportunity within the first 30-60 minutes
immediately following exercise in which carbohydrates are more quickly stored as
glycogen. This accelerated rate gradually slows over the next few hours to a normal,
resting level. After a glycogen depleting exercise session, such as a long training ride or
race, the highest post-exercise glycogen resynthesis occurs when ingesting at least one
gram of carbohydrate per kilogram of body weight in that first hour. For a 150 lb cyclist,
this translates to approximately 68 grams of carbohydrates.
The type of carbohydrates consumed during this period can also make a difference. Highglycemic
carbohydrates appear to be the most effective during the 30-60 minute postexercise
window. While some research has suggested that including a small amount of
protein improves the rate of glycogen storage, there is also evidence showing no
improvements when adding protein. Given that protein is an essential component for
rebuilding tissue and that it does not limit glycogen storage, it makes sense to take in
both. There are numerous recovery drink mixes that use a carbohydrate/protein ratio of
3:1 or 4:1, simplifying the process for you.
Re-hydration is arguably the most important element of refueling for recovery. Intense
exercise can cause a large loss in fluid, and in hotter conditions, endurance athletes can
lose as much as three liters of sweat per hour. A fluid deficit of as little as 2% of body
weight can impair performance, emphasizing the importance of hydration as part of
optimal recovery. Try to take in at least 16-20 ounces of fluid for every pound of body
weight lost during a training session or race. It is also important to recognize that the
thirst mechanism is delayed compared to your body’s hydration needs. Drink before
you’re thirsty on the bike, and consume the appropriate amount of fluid during recovery
regardless of thirst.
Minerals such as sodium, potassium, chloride, calcium and magnesium are lost through
sweat. A mineral imbalance can negatively affect muscular contraction and hormone
function. Replacing the minerals that are lost in the highest quantity (sodium &
potassium) can be easily achieved using many of the common sports drinks available
Vitamins and minerals play an important role in energy production. For example, the
mineral iron is essential for carrying and transporting oxygen in the blood. Vitamins such
as B1 and B2 are involved in metabolizing fuel for working muscle. The vitamin and
mineral needs of most athletes are satisfied with a well balanced diet. If you suspect that
you are lacking in some areas of your diet, a multivitamin antioxidant may help fill some
of the nutritional gaps. Antioxidant vitamins such as C, E & beta carotene appear to help
reduce some of the damage from oxidative stress in muscle. Keep in mind that vitamin
supplements should not replace a balanced diet, as nutrients are best obtained from
wholesome foods.
Rebuilding for Recovery
Protein is an essential element in the structure of every cell. Without it we would not be
able to repair the muscular damage caused by training. Furthermore, amino acids (which
form proteins) play an important role in metabolism and in regulating blood glucose
levels, directly affecting the fueling of muscle.
The optimal amount of dietary protein intake has been argued over extensively, and is
still not entirely agreed upon. For endurance athletes, the ideal amount appears to range
somewhere between 1.0-1.6 grams of protein per kilogram of body weight per day. This
suggests that a 150 lb. cyclist should consume between 68-109 grams per day. While this
is clearly a wide range, the timing of protein intake should also be considered. For
example, when tissue repair is critical to recovery, such as during periods of significant
increase in volume or intensity, protein needs may be closer to the higher end of the
range, while less intense training phases may require a slightly lower protein intake.
During sleep, the body goes through its most significant regenerative processes, which
include the production of growth hormone (GH). GH stimulates rebuilding of muscle,
improves the delivery of fuel to muscle and stimulates fat metabolism. Taking a brief nap
during the day can provide additional GH release, potentially improving recovery. The
duration of a nap need not exceed 20-30 minutes to be effective.
Sleep also supports proper mental functioning such as memory and other important tasks
required for optimal cycling performance. Sleep deprivation, on the other hand, can affect
maximal exercise performance, reducing exercise time to exhaustion by as much as 20%.
Loss of sleep can also increase your perceived effort during exercise, with potentially
adverse affects on your confidence and motivation.
While researchers are not certain of the optimal volume of sleep for athletes, it is clear
that sleep deprivation can hinder performance and recovery. If your mental focus seems
impaired after a limited number of sleep hours, or your perception of effort on the bike
seems higher than it should, try gradually increasing your hours of sleep until feeling
clear minded and strong on the bike again.
Restoring for Recovery
Intense physical training stimulates the stress response (sympathetic division) of the
nervous system. Stress hormones are produced that increase the breakdown of glycogen
for fuel and damage muscle tissue, while placing strain on the immune system as well.
Conversely, the counterpart of the stress response in the nervous system (parasympathetic
division) is naturally enhanced during periods of rest or while digesting a meal. When the
parasympathetic “counter-stress” response takes over, restoration and recovery are
Psychological stress produces a similar response as intense exercise even when not
exercising. You can promote the restorative effects of recovery by reducing sympathetic
activity and encourage parasympathetic activity whenever possible. For example,
restorative Yoga poses support parasympathetic activity, enhancing recovery. We can
also train this response in the brain in a similar way that we train the body on the bike. By
practicing relaxation, the mind learns to reduce sympathetic stimulation off the bike,
minimizing the stress response when it is least needed.
Musculoskeletal alignment refers to creating and maintaining the natural and full range of
motion in the joints, muscles and connective tissues of the body. Flexibility and joint
alignment allow optimal movement patterns. Flexibility can also describe a tissue’s
ability to change in length or form without injury. Restoring muscle tissue to its natural
length from a chronically contracted state can improve its ability to produce force. Good
flexibility also supports joint health through improved lubrication and prevention of
injuries. Alignment-based stretching, such as in certain styles of Yoga can help improve
these restorative aspects of recovery.
Massage is a commonly employed recovery tool for cyclists. It is interesting that little
scientific evidence supports performance benefits from massage other than a reduction in
perceived effort. Nonetheless, massage can increase circulation to a given area,
nourishing heavily worked muscles with fresh blood to help repair and restore damaged
tissue. Massage can also assist in realigning overworked joint movement patterns, such as
the repetitive motion of pedaling for hours in a bent-forward position. Even self-massage
can be a restorative practice. Lie on the floor with your legs elevated (feet against a wall
or on a chair), use massage strokes that are not too deep, yet flush the muscles with fresh
blood. The healing effects of massage are apparent to those who take advantage of this
recovery tool.
Elements of Optimal Recovery
• Replenish glycogen stores within 30-60 minutes following a workout or race.
Take in one gram per kilogram of body weight of high-glycemic carbohydrates.
• Consume 16-20 oz of fluid per pound of weight lost during exercise.
• Consume adequate protein (1.0-1.6 gm/kg/day), especially during intense period
of training or racing.
• Sufficient sleep is important for optimal growth hormone production and
rebuilding and repairing damage. “Power naps” of 20-30 minutes also help do the
• Minimize the stress response off the bike to maximize restoration. Practice
calming the mind and recovery will improve.
• Stretch or practice alignment-based forms of Yoga to restore muscle/connective
tissue and joint alignment.
• Massage is a long-time recovery tool of the cyclist. Take advantage of its
restorative effects.

Dario Fredrick, M.A. is an exercise physiologist and the head coach/director of the
Whole Athlete Performance Center. He can be reached via www.wholeathlete.com

3 Great Aerobic threshold workouts

sourced from Active.com on 4/3/2011

Edmund R. Burke, Ph.D.


While endurance training is the backbone of a mountain biking fitness program, in order to compete in racing one needs to compete at a heart rate that can be maintained for 15 to 45 minutes of decidedly hard effort, most commonly on climbs.

At this point you are riding at the threshold between where the energy for muscular contraction is coming primarily from aerobic metabolism and where anaerobic metabolism begins to kick in at a high rate.

Once you pass the threshold, the muscles produce excessive amounts of lactic acid which begins to accumulate in the body. The process of lactic acid production begins to shut down the metabolic mechanisms within your muscle cells, and because it is an acid, you experience that familiar burning sensation in your muscles.

For most fit athletes this will be between 80% and 85% of their max heart rate. When training in this zone, the primary benefit to you is an increase of the speed or effort that you can work at before you cross over into the pain of lactic acid accumulation. Provided you have the proper aerobic base built from primarily endurance work, this training could well provide the level of training your cycling is missing.

When you are riding at this intensity you will experience heavy breathing, tired muscles and fatigue. And when you train at this effort, you will experience a training effect that will allow you to sustain more work at higher intensities at a lower heart rate.

The importance of training at lactate threshold is significant for several reasons. If everything else were equal, the higher your lactate threshold, the faster pace or speed that can be held over long distances or steep climbs. While success in off-road events is in part related to high maximal aerobic capacity and the ability to descend quickly on gnarly single tracks, it also requires cyclists to compete at a high percentage of their maximal capacity.

The training programs listed below will help you raise your threshold from 75-80% to the 85% level found in elite cyclists. This means that you will be able to ride at a pace closer to your maximum oxygen consumption without accumulating excessive amounts of lactic acid.

What does this mean? Well, youll be able to raise your speed on a long steep climb lets say from 10 m.p.h. to 12 m.p.h. You will also be able to breakaway with fitter cyclists, climb hills stronger and attack with more speed, but only after you have the proper base of endurance conditioning. If you dont have the proper base of aerobic conditioning, these workouts will tear you down rather than build you up.

If youre not already not using lactate threshold training, try adding a little to your weekly program. Start off with one session per week, and gradually increase the intensity and length of these sessions. Dont increase the frequency once a week is plenty. Your race performances should improve as your lactate threshold goes up.

Long intervals:

These intervals range from 1 to 5 minutes long.

A good plan is to start with shorter intervals. Then as you become more fit, lengthen the intervals. Many cyclists consider 1 to 2 minute intervals short, while 4 to 5 minutes would be long. Gradually raise your heart rate to lactate threshold level and maintain it to the end of the interval.

The rest intervals between the intervals should be in the 2 to 5 minute range or to when you heart rate returns to about 120 beats per minute, although the length of recovery will vary with the length and the intensity of the interval. Ride easily during recovery until you feel you have recovered for the next interval.

Start with 3 or 4 intervals then gradually increase the number of intervals, 5 or 6 is plenty. As you increase the number of intervals you should also increase the length of each interval until, after several months, you can complete two sets of five, five-minute intervals. In the early part of the season use your middle chainring. Once you are into your heavy racing season, use the big chainring.

Timed-hill interval

Mark off a known distance on a hill that will require about 5 to 7 minutes to ride at threshold heart rate. Then ride the distance and record your time and ending heart rate. The goal is to try and lower your time, while not going over your threshold heart rate during the interval.

Lactate crisscross training

You need a heart rate monitor with a high/low "target zone" system. Simply set the lower alarm on your monitor about eight beats below your lactate-threshold heart rate and the upper alarm about five to six beats above your lactate threshold heart rate.

After a good warm-up, increase your speed or intensity steadily until the upper alarm goes off, then gradually slow your pace until the lower alarm sounds. Travel back and forth between the upper and lower alarms, taking about 2 minutes to make each ascent and descent. Again add time to each interval and number of repetitions to your workout as your fitness progresses during the season.

Hammer Nutrition Rocks

Hammer Nutrition is a good site with lots of fuel/training info. Excellent products, order up, use my account. New refferals score 15% off. Just call 800 336 1977 Hammer order line, tell them Heath sent ya. Acct# 96496 HAMMER SITE

HEY BUCKO! I spent mucho time putting this site together. And you've obviously spent time here. I don't have google ads and not trying to make money. Just trying to help a fellow biker......all I ask is, and don't forget, mention acct #96496 sent ya when you order Hammer, we both get discount!! ....Thanks, Heath

MTB Race Starts (archive date for retreival)

Mountain Bike Race Starts (LW Coaching)
The start of a mountain bike race can be crucial in deciding race outcome. When the trail narrows down to single track after the start, there is always a furious fight for the hole-shot. Getting that hole-shot and being first into the single track can be a huge advantage. If you are in the lead in the single track you can control the pace. On the flip side, there is nothing more infuriating in a race than getting stuck behind a rider who is slow through the single track.
Specific "start" workouts must be part of your training plan if you want to win short track and cross country races. Mountain bike starts are always an anaerobic effort for several minutes then a threshold effort for most of the rest of the race. The key to "start" practice is training your legs to recover from an anaerobic effort while continuing at threshold pace.
To make the workout as specific as possible, simulate race conditions as closely as possible. Begin your workout with the warm up you plan on race day. This is something you should have dialed in long before race day. The key "starts" workout involves a maximum effort followed immediately by a longer period at your lactate threshold (Friel heart rate zone 4-5a).

The Workout
Warm up for 30 minutes. From a stand still with one foot on the ground, go max effort for 1 min. Drop to heart rate zone 4ø5a (LT threshold pace) for 5 minutes. Spin easy zone 1 back to start line. Repeat 2ø4 times.
You can customize this workout to match your next peak race. Ideally, do this workout on the actual race course. Go max effort until you reach the single track then continue with your heart rate in zone 4-5a for another five minutes.
If you cannot travel to the race course, simulate the time to the single track for the max effort then continue at heart rate zone 4-5a for five more minutes.
This workout is a specific race workout and should be done in the 4 ø 6 weeks prior to your peak race. Contact Lynda with Questions, Comments, or Suggestions.


The Lactate Threshold

original source document

The Lactate Threshold
Introduction: Few topics in exercise physiology have been more frequently investigated, or more vigorously debated than the lactate threshold. The details create the biggest debates. However, it is the basics that have great application to training and performance. So, we'll stick to those.

What is Lactic Acid and Where Does it Come From?

The carbohydrates you consume consist of several different sugar molecules; sucrose, fructose, glucose to name a few. However, by the time the liver does it's job, all of these sugars are converted to glucose (see figure to left) which can be taken up by all cells. Muscle fibers take up glucose and either use it immediately, or store it in the form of long glucose chains (polymers) called glycogen. During exercise, glycogen is broken back down down to glucose which then goes through a sequence of enzymatic reactions that do not require oxygen to proceed. All of these reactions occur out in the cell fluid, or cytosol. They proceed very rapidly and yield some energy for muscle work in the process. This glycogen/glucose breakdown pathway is called the anaerobic (no oxygen) glycolysis (glucose breakdown) pathway. Every single glucose molecule must go through this sequence of reactions for useful energy to be withdrawn and converted to ATP, the energy molecule that fuels muscle contraction, and all other cellular energy dependant functions.

The Metabolic Fork in the Road

There is a critical metabolic fork in the road at the end of glycolysis. At this fork, glucose has been converted from one 6 carbon molecule to two, 3 carbon molecules called pyruvic acid, or pyruvate. This pyruvate can either be shuttled into the mitochondria via the enzyme pyruvate dehydrogenase, or converted to lactic acid via the enzyme lactate dehydrogenase. Entry into the mitochondria exposes the pyruvate to further enzymatic breakdown, oxidation, and a high ATP yield per glucose. This process inside the mitochodria ultimately requires oxygen molecules to proceed and is therefore "aerobic." Conversion to lactate means a temporary dead end in the energy yielding process, and the potential for contractile fatigue due to decreasing cellular pH if lactic acid accumulation proceeds unchecked. Like a leaf floating in a river, the pyruvate molecule has no "say" in which metabolic direction is taken. The conditions in the muscle determine that.

Which way will MY pyruvate go during exercise?

I am sure you have surmised that that is a critical question with big implications for performance. I will try to answer the question at three levels: a single muscle fiber, an exercising muscle, and the entire exercising body.

The Muscle Cell at Work

In a single contracting muscle fiber the frequency and duration of contractions will determine ATP demand. ATP demand will be met by breaking down a combination of two energy sources: fatty acids and glucose molecules(ignoring the small contribution of protein for now). As ATP demand increases, the rate of glucose flux through glycolytic pathway increases. Therefore at high workloads within the single fiber, the rate of pyruvic acid production will be very high. If the muscle fiber is packed with lots of mitochondria (and therefore more Pyruvate Dehydrogenase), pyruvate will tend to be converted to Acetyl CoA and move into the mitochondria, with relatively little lactate production. Additionally, fatty acid metabolism will account for a higher percentage of the ATP need. Fat metabolism does not produce lactate, ever! If lactate is produced from glucose breakdown, it will tend to be transported from the area of high concentration inside the muscle cell to lower concentration out of the muscle fiber and into extracellular fluid, then into the capillaries.

The Whole Muscle at Work

Now let's look at an entire muscle, say the vastus lateralis of the quadriceps group during cycling. At a low workload, glycolytic flux is low (fatty acid breakdown ins relatively high at low intensities) and the pyruvate produced is primarily shuttled into the mitochondria for oxidative breakdown. Since the intensity is low, primarily slow twitch muscle fibers are active. These fibers have high mitochondrial volume. As workload increases, more fibers are recruited and already recruited fibers have higher duty cycles (more work and less rest). Now ATP demand has increased in the previously active fibers, resulting in higher rates of pyruvic acid production. A greater proportion of this production is converted to lactic acid rather than entering the mitochondria, due to competition between the two enzymes LDH and PDH. Meanwhile, some fast twitch motor units are starting to be recruited. This will add to the lactate produced in and transported out from the working muscle due to the lower mitochondrial volume of these fibers. The rate of lactate appearance in the blood stream increases.

The Body at Work

The vastus is just one of several muscles that are very active in cycling. With increasing intensity, increased muscle mass is called on to meet the force production requirements. All of these muscles are contributing more or less lactic acid to the extracellular space and blood volume, depending on their fiber type composition, training status and activity level. However, the body is not just producing lactate, but also consuming it. The heart, liver, kidneys, and inactive muscles are all locations where lactic acid can be taken up from the blood and either converted back to pyruvic acid and metabolized in the mitochondria or used as a building block to resynthesize glucose (in the liver). These sites have low intracellular lactate concentration, so lactic acid is transported INTO these cells from the circulatory system. If the rate of uptake, or dissappearance, of lactate equals the rate of production, or appearance, in the blood, then blood lactate concentration stays constant (or nearly so). But, when the rate of lactate production exceeds the rate of uptake, lactic acid accumulates in the blood volume, then we see the ONSET of BLOOD LACTATE ACCUMULATION (OBLA). This is the traditional "Lactate Threshold" (LT).

The Traditional Lactate Threshold

We have previously discussed the value of a high maximal oxygen consumption for the endurance athlete. A big VO2 max sets the ceiling for our sustainable work rate. It is a measure of the size of our performance engine. However, the Lactate Threshold greatly influences the actual percentage of that engine power that can be used continuously.

Most of you will never have this measured in a laboratory, but a brief description of a lactate threshold test is still useful, because it will lead us into some specific applications for your racing and training. The test consists of successive stages of exercise on a treadmill, bicycle ergometer, swimming flume, rowing machine etc. Initially the exercise intensity is about 50- 60% of the VO2 max. Each stage generally lasts about 5 minutes. Near the end of each stage, heart rate is recorded, oxygen consumption is measured, and a sample of blood is withdrawn, using a needle prick of the finger or earlobe. Using special instrumentation, blood lactate concentration can be determined during the test. After these measurements, the workload is increased and the steps repeated. Through a 6 stage test, we would expect to achieve a distribution of intensities that are below, at , and above the intensity where blood lactate begins to rise, or the lactate threshold. This point is often defined as a 1mM increase from baseline values. The data from a test would generally look simililar to the example below.

Interpreting the Data

For purposes of interpretation, let's say that the athlete above had a maximal heart rate of 182, and a VO2 max or 61 ml/min/kg. These were also determined using a bicycle test. So they are good values for comparison. Looking at the green dots, we see that blood lactate concentration does not begins to increase until during the 4th workload,from a concentration of abouu 1 mM to 2.5 mM. This is the break point. The subjects VO2 was 45 ml/min/kg at this point. So we determine that his LT occurs at 45/61 or about 74% of VO2 max. If we look at the heart rate at this point, it is 158. Now we have a heart rate at lactate threshold. 158 = about 85% of his max heart rate. This is useful for the athlete. When he is cycling, he can judge his training intensities based on this important value. If he is a time trialist, this would approximate his racing heart rate for the hour long event.

An Updated View on the Lactate Threshold

When I was in school, the textbooks basically presented the lactate threshold as a single point on the exercise intensity scale where blood lactate concentration started to increase. This is the kind of picture you see above. Once you exceeded this "threshold" intensity, fatigue was just around the corner. Over the last 25 years, a great deal of research has demonstrated that this was an oversimplistic representation of things. First of all, taking a blood sample during exercise is like seeing a photo of a bathtub; The picture cannot tell you whether the tub is filling, stable in water level, or emptying. During exercise, lactic acid is being simultaneously produced by working muscles and removed by other muscles as well as the heart, liver, and kidneys. If production rate equals removal rate, then blood lactate concentration will be stable. If production exceeds removal rate, lactate concentration increases. The picture below depicts a more modern view of lactate thresholds and their relationship to exercsie intensiity. The green zone represents an exercise intensity range where lactate production is low and lactate removal easily matches production. The yellow zone represents a range of intensities where we see a marked increase in blood lactate prododuction. But, lactate removal also increases so that a new stable blood lactate concentration is achieved. Finally, the red zone represents intensities where lactate production now exceeds the maximal rate of blood lactate removal. Exercise in this intensity range results in accumulation of lactate acid and fatigue. I have used this 3-zone exercise intensity model to quantify how good endurance athletes organize their daily training intensity. You can download one the research articles I have published on this topic here.For most athletes, the LT1 corrsponds to about 2mM blood lactate. And, as a rough roule of thumb, the LT2 occurs at about 4mM. BUT, there is substantial individual and exercise mode variation here! There are numerous published examples of athletes who can work for 30-60 minutes at an intensity producing a STABLE blood lactate concentration of up to 10mM or even higher. The LT2 blood lactate concentration can range from 3mM to 10mM depending on the individual. And, the LT2 value seems to be higher for activities involving a smaller active muscle mass. Running, rowing and skiing tend to have more typical LT2 lactate concentrations (3-4 mM) while cycling, kayak paddling, etc. may show higher average LT2 values(4-6mM). What we can conclude from this is that it is risky to just assume that a fixed blood lactate concentration like 4mM always corresponds to the lactate threshold. It does not.

Performance Implications

Lactic acid production is not all bad. If we could not produce lactate, our ability to perform brief high intensity exercise would be almost eliminated. However, As I am sure you are aware, lactic acid is the demon of the endurance athlete. Cellular accumulation of the protons (increased acidity) that dissociate from lactate results in inhibition of muscle contraction. Blame those heavy legs on the protons! The bottom line is that exercise intensities above the LT2 point can only be sustained for a few minutes to perhaps one hour depending on how high the workload is above the intensity at which lactate production exceeds maximal rates of removal. Exercise between LT1 and LT2 intensities are often sustainable for 1-2 hours, depending on glycogen availability and where within that range we are exercising. Exercise below LT1 can be potentially sustained for hours, if hydration status and other factors are controlled.

Factors that Influence the Rate of Lactate Accumulation in the body

Absolute Exercise Intensity-

for reasons mentioned above.

Training Status of Active Muscles-

Higher mitochondrial volume improves capacity for oxidative metabolism at high glyolytic flux rates. Additionally, improved fatty acid oxidation capacity results in decreased glucose utilization at submaximal exercise intensities. Fat metabolism proceeds via a different pathway than glucose, and lactic acid is not produced. High capillary density improves both oxygen delivery to the mitochondria and washout of waste products from the active muscles.

Fiber Type Composition-

Slow twitch fibers produce less lactate at a given workload than fast twitch fibers, independent of training status.

Distribution of Workload -

A large muscle mass working at a moderate intensity will develop less lactate than a small muscle mass working at a high intensity. For example, the rower must learn to effectively distribute force development among the muscles of the legs back and arms, rather than focusing all of the load on the legs, or the upper body.

Rate of Blood Lactate Clearance-

With training, blood flow to organs such as the liver and kidneys decreases less at any given exercise workload, due to decreased sympathetic stimulation. This results in increaed lactate removal from the circulatory sytem by these organs.

So, Do I race at My LT Intensity?

This depends on your race duration. If your are rowing 2000 meters, running a 5k race etc., your exercise intensity will be well above the LT2. Consequently, the blood lactate measured after these events is extremely high in elite athletes, on the order of 15mM (resting levels are below 1 mM). In races lasting from 30 minutes to 1 hour, well trained athletes also perform at an intensity right at or even slightly above LT2. It appears that in these events, top performers achieve what might be termed a "maximal lactate steady state". Blood lactate may increase to 8 to 10 mM within minutes, and then stabilize for the race duration. A high but stable lactate concentration may seem to contradict the idea of the LT. But, remember that blood lactate concentration is the consequence of both production and clearance. It seems likely that at these higher lactate concentrations, uptake by non-working muscles is optimized. At any rate, measurements in cyclists, runners and skiers demonstrate the fact that elite performers can sustain work levels substantially above the traditional lactate threshold for up to an hour.

Specificity of the Lactate Threshold

It is important to know that the lactate threshold is highly specific to the exercise task. So if this cyclist tries to get on his brand new, previously unused, rowing machine and row at a heart rate of 158, he will quickly become fatigued. Rowing employs different muscles and neuromuscular patterns. Since these muscles are less trained, the cyclist's rowing LT will be considerably lower. This specificity is an important concept to understand when using heart rate as a guide in "cross training activities", as well as for the multi-event athlete.

Effect of Training

For reasons mentioned above, training results in a decrease in lactate production at any given exercise intensity. Untrained individuals usually reach the LT at about 60% of VO2 max. With training, LT can increase from 60% to above 70% or even higher. Elite endurance athletes and top masters athletes typically have LTs at or above 80% of VO2 max. Values approaching 90% have been reported. The lactate threshold (or thresholds) is/are both responsive to training and influenced by genetics.
Exercise physiology
Copyright 2007 Stephen Seiler
All Rights Reserved